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ABSTRACT: Numerical seasonal forecasts in Earth science always contain forecast errors that cannot be eliminated

by improving the ability of the numerical model. Therefore, correction of model forecast results is required. Analog

correction is an effective way to reduce model forecast errors, but the key question is how to locate analogs. In this

paper, we updated the local dynamical analog (LDA) algorithm to find analogs and depicted the process of model

error correction as the LDA correction scheme. The LDA correction scheme was first applied to correct the opera-

tional seasonal forecasts of sea surface temperature (SST) over the period 1982–2018 from the state-of-the-art coupled

climate model named NCEP Climate Forecast System, version 2. The results demonstrated that the LDA correction

scheme improves forecast skill in many regions as measured by the correlation coefficient and root-mean-square error,

especially over the extratropical eastern Pacific and tropical Pacific, where the model has high simulation ability. El

Niño–Southern Oscillation (ENSO) as the focused physics process is also improved. The seasonal predictability

barrier of ENSO is in remission, and the forecast skill of central Pacific ENSO also increases due to the LDA correction

method. The intensity of the ENSOmature phases is improved.Meanwhile, the ensemble forecast results are corrected, which

proves the positive influence from this LDA correction scheme on the probability forecast of cold and warm events. Overall,

the LDA correction scheme, combining statistical and model dynamical information, is demonstrated to be readily integrable

with other advanced operational models and has the capability to improve forecast results.
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1. Introduction

Models in Earth science are an important tool for ana-

lyzing physical processes and forecasting natural conditions.

However, a model always has shortcomings related to its

numerical and physical parameterizations, initial condi-

tions, and external forcing. Many studies have attempted to

optimize model parameterization and improve the models’

vertical and horizontal resolutions (Dai et al. 2003; Feng

et al. 2013; Hourdin et al. 2017; Medvigy et al. 2010; Zhu

et al. 2017). However, the development and improvement

of a model can be a slow and computationally demanding

process. Correction methods to improve numerical models

are an effective way to improve the performance of nu-

merical models. The correction schemes for model forecast

error correction can be divided into state-independent and

state-dependent methods (Danforth and Kalnay 2008).

Generally, statistical methods to correct model forecast

errors are state-independent corrections, such as model output

statistics (MOS) (Carter et al. 1989; Glahn and Lowry 1972; Xu

and Yang 2012). However, state-independent corrections can

reduce only the systematic component of model forecast errors

(Delsole and Hou 1999; DelSole et al. 2008). Considering that

state-dependent components constitute the majority of total

model forecast errors (Dalcher and Kalnay 1987), state-

dependent corrections are therefore needed to reduce re-

sidual components and further improve forecasts.

Earth science has benefited from the proliferation of satel-

lite data, in situ monitoring, and numerical simulations in re-

cent years. Large databases of valuable information have been

collected for oceanic and atmospheric science. Lorenz (1969)

exploited the availability of such datasets facilitates the iden-

tification of states similar to a dynamic system of interest.

Analogs, phenomena of atmospheric and oceanic nonlinear

evolution, have been widely used in predictability and forecast

studies. Based on analogs of the data, Hamill and Whitaker

(2006) provided an underlying theoretical basis for refor-

ecast analogs and applied them in probabilistic quantitative

precipitation forecasts. Lguensat et al. (2017) focused on the

field of data assimilation and developed an analog data as-

similation technique. The analog data also have been used

to develop a model-analog method to forecast tropical

oceanic and atmospheric variables (Ding et al. 2018, 2019,

2020), which provided a novel view and method of opera-

bility to forecast climate variation on seasonal scale. This

method selected the nearest model states from a long con-

trol run of a coupled general circulation model as analogs to

the observed initial state; then their evolution within the

control run provides the model-analog forecasts. The model-

analog ENSO hindcast skill matches or even exceeds traditional

assimilation-initialized forecast skill when being applied to the

same model (Ding et al. 2018, 2019, 2020). These researches

have demonstrated the usefulness of analogs in inversions of theCorresponding author: Jianping Li, ljp@ouc.edu.cn
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evolving trajectories of a dynamic system in statistics. Numerical

models represent the evolution of the system in dynamics. So,

can analogs be used to correct numerical model forecast results

and improve the forecast skill? Once the forecast state can be

regarded as a small disturbance superimposed on historical an-

alogs, statistical techniques from analogs can be used in combi-

nation with model dynamical forecasts (Gao et al. 2006; Huang

et al. 1993; Ren and Chou 2006, 2007). Following this idea, Ren

and Chou (2007) used the estimated forecast error to predict a

final analog correction of errors and showed that this method

can to some extent reduce prediction errors and improve pre-

diction ability in forecast results of summermean circulation and

total precipitation. The analog correction method to model

forecast results does not require a newmodel to be built; instead,

it can be applied to existing numerical models and observational

data. However, the key question of the analog correction

method is how to locate an analog for the interest of state ef-

fectively (Badr et al. 2016; Liu and Ren 2017; Ren et al. 2009).

The analog correction scheme is a promising approach to im-

prove model forecast skill. However, in recent years, there are

few studies related to how to locate an analog.

Analogs of the observational data are located using the local

dynamical analog (LDA) method in the predictability studies

(Ding et al. 2016; Li and Ding 2013, 2015; Li et al. 2018). Li and

Ding (2011) demonstrated the benefits of using LDAs in lo-

cating analogous states compared with other local analog-

based methods. The LDA method ensures similarity between

the dynamical evolution of both states instead of considering

only their initial states, which contributes to locate analog with

high quality. However, the traditional LDA method is used

for diagnosis problems but not for forecast correction ap-

plications. Therefore, Hou et al. (2020) updated the LDA

method meanwhile ensuring the physical meaning of the

LDA method. In Hou et al. (2020), the LDA correction

method has been applied to an intermediate coupled model

of El Niño–Southern Oscillation (ENSO), which confirmed

that the LDA correctionmethod can locate high quality analogs

of focused states compared to other analog methods and im-

prove model forecast performance. The LDA method is a

promising method to be applied to existing numerical models

and improve forecast skill. However, the LDA correction

method has not yet been applied to operational state-of-the-art

air–sea coupling models.

Seasonal predictions of sea surface temperature (SST) can

be applied in positive ways to benefit society and economy and

are now routinely produced at many operational centers using

numerical models (e.g., Barnston et al. 2012; Saha et al. 2014;

Stockdale et al. 2011). However, the accuracy of SST predic-

tions is still limited (Xue et al. 2013). As an operational sea-

sonal forecast model, National Centers for Environmental

Prediction (NCEP) Climate Forecast System version 2 (CFSv2)

offers routinely forecast products up to the lead time of 9months

in recent decades and has been shown to have a certain skill in

seasonal climate prediction (Saha et al. 2014). Therefore, in this

paper, wewill describe systematically the application steps of the

LDA correction scheme and correct the SST operational fore-

casts of CFSv2. Besides correct the deterministic forecast, we

first apply the analog correction method to model ensemble

forecast and evaluate the improvement of the probability fore-

cast skill from theLDAcorrectionmethod. The rest of the paper

is organized as follows: themethod and data used are introduced

in section 2, results are described in section 3, and section 4

presents the main conclusions and discussions.

2. Method and data

a. Data

In this work, we apply the LDA correction method to the

operational forecast of SST from the CFSV2. The predictions

are initialized in all calendar months from January 1982 to

December 2018 (Saha et al. 2014; Xue et al. 2013). For each

year, predictions were produced at 18 3 18 horizontal resolu-

tion out to a lead time of 9 months for the period 1982–2018.

In this paper, the forecast used is the deterministic (en-

semble mean) forecast results. Meanwhile, the ensemble

members m01–m12 of CFSv2 are also corrected by the

LDA-corrected method.

For verification, the monthly SSTs from the optimum in-

terpolation sea surface temperature, version 2 (OISSTv2),

dataset are the observational data used and have a horizontal

resolution of 18 in latitude and longitude (Reynolds et al. 2002).

Before applied to the analog correction experiment, the

CFSv2 dataset and OISSTv2 have been processed, including

removing climate state and tendency to get anomalies, and

removing forecast drift. Similar to Hu et al. 2014, due to the

impact of a discontinuity in the ocean component, two climate

states are used to compute the anomalies both for CFSv2

predicted andOISSTv2 analyzed (Xue et al. 2013; Kumar et al.

2012). The first climatology is the average between January

1982 andDecember 1998, and the second one between January

1999 andDecember 2018. Then, SST data both from the CFSv2

forecast and OISSTv2 analysis are removed the least squares

linear trend of the time dimension from all grid points. The

climate drift of the forecast results in different lead time have

been also removed.

b. Method

The analog correction method takes advantage of model

forecast errors of analogous states in historical data, which are

retrieved in advance, to correct forecast results of the state of

interest whose subsequent actual conditions have not yet been

observed. The key question of the analog correction method is

how to locate analog. In this paper, we used the LDAmethod.

The LDA method was first proposed to estimate the sys-

tem’s predictability by Li and Ding (2011). They demonstrated

the benefits of this approach in locating analogous states in

comparison with other analog location methods. The LDA

method ensures similarity between the dynamical evolution

of both states in addition to similarities in their initial states.

To apply the LDA method to the model correction, Hou

et al. (2020) updated the algorithm. Given state ya(ti) (the

state-of-interest, representing an observational state) and

its possible analog point ya(tk) from the historical dataset

pool, the initial distance di between these two points is given

by di 5 jjya(ti) 2 ya(tk)jj, where jj jj represents the norm
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distance. Within the initial evolutionary interval LD, where D is

the sampling interval of the time series (i.e.,D5 ti2 ti21) andL is

chosen as the number of sampling intervals over the evolutionary

interval, the evolutionary distancedebetweenpoints y(ti) and y(tk)

is given by (Hou et al. 2020)

d
e
5
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Thus, the total distance dt between state points y(ti) and

y(tk), considering not only the initial distance, but also the

evolutionary distance, is defined by adding di and de (i.e., dt 5
di 1 de). The term de represents the dynamical information. If

dt is exceedingly small, it is highly likely that the points ya(tk)

is a local dynamical analog point of ya(ti). Thus, analog states of

the LDA method are identified using initial and evolutionary

information at two distinct time points in the time series

under a systemwith reduced dynamical dimension. In contrast,

traditional approaches to locating analogous states only con-

sider similarities in initial spatial structures, which ignores

dynamical evolution information, meanwhile based on the

spatial structure of variable field whose analogs need be found

in more data.

However, the state distance between a focused state and its

initial-near states in the phase space increases with the

dynamical system developing, the same for the focused

state and its analogs. Thus, when locating an analog, the

state distance jjya(ti2j) 2 y(tk2j)jj in the lead time of j al-

ways is large compared to that jjya(ti21) 2 y(tk21)jj in the

lead time of j5 1. Thus, the originated evolutional distance

de 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
gives more weight to the

state distance far from the focused time. For example,

jjya(ti2L) 2 y(tk2L)jj is the developed state distance and

always is larger than jjya(ti21) 2 y(tk21)jj. Compared to the

pairs ti21 and tk21 which are more adjacent to the focused

state time ti and tk, jjya(ti2L) 2 y(tk2L)jj should have less

weight to reduce error growth effect due to the condition

of ti2L and tk2L far from the focused state time ti and tk.

Thus, the formula (1) with equal weight exists some defi-

ciency in view of error growth dynamics.

To get to unequal weight coefficient, we should acquire the

averaged error growth rate of two initial-near states in the

phase space. In forecast concept, the initial state to forecast is

the analog state of real state. Considering that the forecast for

the future state can be made simply by persistent forecast re-

sults, which can be regarded as the adjacent states in the space

phase under less stringent constraints. Therefore, based on the

persistent forecast results, we modified de as

d
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where RMSE( j) is root-mean-square error (RMSE) of per-

sistent forecast compared with observation at the lead time of j.

With experiment proving, this modification made error evo-

lutional conditions more authentic and improved the correc-

tion performance.

Due to the application of the LDAmethod, we focus on the

variable on each grid of SST field. Thus, we replace the vector

variable ya, with the time series variable ya. The jj jj can be

regarded as the absolute operation j�j. After getting the analog

ya(tk) of the focused states ya(ti), model forecast error pre-

dicting from the initial time tk to time tk1j can be described as

follows:

e
j
(t
k
)5 y

f ,j
(t

k
)2 y

a
(t
k1j

) , (3)

where yf,j(tk) is the model forecast value at the lead time of j

from ya(tk), f represents the forecast result. As a possible an-

alog of ya(ti), ya(tk) is the model initial state to predict the state

yf,j(tk) at the time of tk1j. Meanwhile, the subsequent obser-

vational value ya(tk1j) corresponding to yf,j(tk) has been also

observed/provided. Therefore, the model forecast error ej(tk)

can be calculated as the formula (3). For the state of interest

ya(ti), its model forecast value in the lead time of j is yf,j(ti),

which is known. However, ya(ti1j) is the future observation

which is unknown. Model forecast result always deviates

from its corresponding observation value. Therefore, the

forecast error ej(ti) exists and is unknown but wants to be

known. The observational analog state in the historical

dataset is known, and the model forecast results and forecast

error are also known.

Based on the thought of the analog correction method, ej(tk)

is similar to ej(ti), to some extent, when ya(tk) is the analog state

of ya(ti). Therefore, ej(ti) can be estimated or corrected by

ej(tk). Considering that the forecast errors always contain some

random part, the correction of ej(ti) is performed from aver-

aged forecast errors from several analogs with the linear re-

gression way.WhenM-nearest analog states are considered for

the state of interest, the mean analog forecast error ej(tk) is

�M

m51ej(tkm)/M and the estimation of ej(ti) can be described as

follows:

ê
j
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i
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e
j
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M

1b
j
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where aj and bj are parameters in the lead time j which can be

determined by the linear regression based on the training data.

Thus, ej(ti) can be partially eliminated by êj(ti) and the model

forecast yf,j(ti) can be corrected as

ŷ
f ,j
(t
i
)5 y

f ,j
(t

i
)2 ê

j
(t

i
) . (5)

The diagram of the LDA correction scheme is shown in

Figs. 1 and 2 displays flowchart of the LDA correction method.

In this paper, the updated LDA correctionmethod is applied

to correct the CFSv2 SST. The model forecast SST is a field

variable. Here, we locate analog using the time series in

every grid as y(ti). The SST time series at each grid is con-

sidered, respectively, by the LDA-analog method. Namely,

ya(ti) represents SST time series at a grid rather than con-

sidering space domains in this paper, which is due to the

time series at one grid having small dimensional informa-

tion and is more likely and simple to locate analog for the

state of interest. Based on the time series data at a grid, the
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analog is located based on the updated LDA method, in-

cluding initial distance information and dynamical evolu-

tional information. From the theoretical formula of the

updated LDA method, there are some key parameters

to be set.

First, the window span L in the LDA method is important

for getting analog with high quality. According to Li and Ding

(2013), the number of the window span L is related to the

autocorrelation coefficient of the data series. Through testing,

we chose the windows span L 5 6 as lead months.

Second, for every focused state, the potential analog

states are limited to historical states with the same season. In

operation, the other years’ calendar months of the analog

are restricted to 3 months relative to that of the state of

interest. For example, choosing the SST state at one grid in

December 1997 as the state of interest, we regard states in

October–February of 1982–95 as the possible analog states.

Then, we can sort these potential states from small to large

based on the distance of the LDA method. In this paper, we

used N 5 6 analogs with the smallest distance as the po-

tential analogs.

Third, we need to choose the final analogs from the potential

analogs. The forecast results of each analogs have been known,

as to the forecast results of the focused state. We can calculate

the correlation coefficient between the analogs’ forecast results

and the focused state’s forecast results during the forecast

period of F months (F 5 9), that is,

corrht
km
, t

i
i5

�
9

j51

y
f ,j
(t

i
)2m
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(t
i
)][y
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FIG. 1. The diagramof the LDAcorrectionmethod to correct themodel forecast. The term ya(ti) is the focused observational state at the
time ti, and ya(tk) represents its possible analog in the historical observation. The term yf,j(ti) is the forecast at the lead time of j from the

initial state ya(ti), which corresponds to ya(ti1j).
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where yf,j(ti) is the SST forecast results initialized from ti at

the lead time of j. The term mf is the mean of forecast results

over the forecast period of F5 9, and tkm is the time of themth

analog states of the focused state. Based on the correlation

coefficient gotten from formula (6), We chose M 5 3 analogs

owning the highest values from six potential analogs as the final

analog states and then get their average forecast error.

Fourthly, based on the averaged analog forecast errors,

forecast results initialized from the focused state can be cor-

rected with linear regression parameters aj and bj. The pa-

rameters aj and bj are determined by the linear regression

process with the real forecast errors of focused states and its

averaged analog forecast errors in the training period. Because

of the limited amount of data, the training period is chosen

by sliding selection checking off 12 months from the time of

focused states. For example, when correcting the forecast

results initialized from January 1997, the forecast data from

CFSv2 and observational data over the period January

1982–December 1995 and January 1998–December 2018 is

regarded as the training dataset. Based on the training

dataset, we can get the real forecast errors and its averaged

analog errors for every state. The line regression parameter

can be evaluated by both forecast errors.

3. Results

In this section, to demonstrate the feasibility and effective-

ness of the LDA correction method in operational seasonal

prediction of SST, we corrected global monthly SST forecast

from CFSv2 and used a sliding window method to divide the

prediction data into two parts: training samples and testing

samples. When the forecast result initiating from a focused

state required correction, other forecast results whose initial

times were separated from state of interest time by.12months

were used to locate analog states. The raw and corrected

SST forecast from CFSv2 were assessed by calculating the

temporal correlation coefficient (TCC), and the root-mean-

square error (RMSE) between model predictions and

OISSTv2, for all initial calendar months and at lead times

from 1 to 9 months.

a. Performance of SST field correction

Figure 3 shows the values of TCC between observations and

the CFSv2 model forecast of SST during 1982–2018 for each

grid cell in the global domain at 3, 6, and 9 lead months. The

first column (Figs. 3a,d,g) represents the performance of the

LDA correction, the second column (Figs 3b,e,h) corresponds

to the performance of the raw CFSv2 forecast, and their dif-

ference is shown in the third column (Figs. 3c,f,i). The raw

CFSv2 model has a reasonable ability to predict the global SST

at a lead time of 3 months, especially in most areas of the

central and eastern tropical Pacific, tropical Indian ocean, and

the tropical Atlantic Ocean, where the highest levels of ACC

forecasting ability are found in the tropical Pacific (second

column of Fig. 3). In the tropical central and eastern Pacific,

especially Niño-3.4 region bounded by 58N–58S, from 1708 to
1208W, the TCC can reach 0.7 at a lead time of 3 months,

which shows that CFSv2 predicts seasonal variation of SST

due to ENSO moderately well (Barnston and Tippett 2013).

With increasing forecast lead time, the TCC decreases, and

the areas with TCC of .0.6 are concentrated mainly in the

tropical central Pacific at a lead time of 9 months. However,

the raw CFSv2 forecast has weak ability to simulate SST

variation of extratropical regions and specially yields a low

correlation coefficient in the North Atlantic, Arctic Ocean,

and the South Indian Ocean at lead times of 6 months

and longer.

Corrected by the LDA correction method, the prediction

skill of SST in CFSv2 is improved (first column of Fig. 3), which

is most evident in the difference between the LDA-corrected

forecasts and the raw forecasts (Figs. 3c,f,i). Positive differ-

ences correspond to an improvement in the TCC skill due to

the LDA correction method. For lead times of 3, 6, and

9 months, TCC increases in many spatial grid cells. The im-

provement yielded by the LDA correction method is not

evenly distributed in space and is concentrated chiefly in the

tropical central and eastern Pacific, the extratropical eastern

Pacific, the Southern Ocean, and the Arctic Ocean. The TCC

increases by.0.12 over the western and central tropical Pacific

at 3 lead months, which implies that the LDA correction

method may contribute to the prediction of the central Pacific

(CP) ENSO. With an increase in lead months, the area of im-

provement in the western and central tropical Pacific at

3 months lead gradually expands east and extratropical over

the Pacific, covering key areas for the development of the CP

ENSO (Kao and Yu 2009; Wang et al. 2017). These areas,

where the LDA method gives a large improvement, may cor-

respond to areas where there are large differences between the

model operational forecasting ability and the predictability

limit for SST. For example, Newman and Sardeshmukh (2017)

suggest that the forecasting ability of SST in the equatorial

FIG. 2. Flowchart of the LDA correction method, which corre-

sponds to Fig. 1.
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Pacific is currently much lower than the predictability limit,

which means that the improvement from the LDA correction

method in this region is useful.

Figure 4 shows the RMSE values between observations and

forecast results. RMSE values of SST increase globally with

increasing lead time. Clearly, some regions, such as the

Kuroshio region, Gulf Stream, and cold tongue region of

the Pacific, have large RMSE values because of their large

variances. After applying the LDA-correlation method, the

RMSE in some regions is reduced, especially the tropical

Pacific. As for the results for TCC (Fig. 3), clear improve-

ments in RMSE are found in the eastern tropical Pacific.

The RMSE value over the tropical eastern Pacific is re-

duced by 0.088C at the lead time of 3, 6, and 9 months (third

column of Fig. 4).

There are some regions that are worse with the correction of

the LDAmethod, such as the western equatorial Pacific, North

and South Pacific and tropical Indian Ocean. However, the

western equatorial Pacific, North and South Pacific and tropi-

cal Indian Ocean are also the regions that have worse forecast

performance in the raw forecast of CFSv2 in Figs. 3b, 3e, 3h, 4b,

4e, and 4h, which implies the deficiency of the CFSv2 in rep-

resenting the evolutional process in these areas. In the extra-

tropical region, the atmosphere has an important role in the

evolution of SST, which brings in noise and reduce the pre-

dictability limit of SST. The CFSv2 model has low forecast skill

in the extratropical region. The deficiency of the model to

describe physics may lead to the increase of the randomness

in the model forecast error, which is not the part of state-

dependent error. The LDA correction method that mainly

reduces the state-dependent error, therefore, has worse

performance in these regions where the model does not have

the capacity to describe its physical mechanism (shown

in Fig. 13).

The CFSv2 forecast product consists of the reforecast and

real-time forecast process. The CFSv2 reforecast covers January

1982–March 2011. The operation forecast has operated since

May 2011. To further demonstrate the convenience and effec-

tiveness of the LDA correction method to real-time seasonal

prediction, we focused on the real-time forecast product of

CFSv2. Here, we corrected the forecast results since May 2011

used the dataset fromJanuary 1982 toMarch 2011 as the training

period to fit linear regression parameters and as the historical

dataset to locate the analog. The improved performance from

the LDA correction method is shown in Fig. 5 in terms of TCC

and RMSE. We find the improvement is more obvious in this

period than that of the results fromFig. 3 and Fig. 4. In Fig. 5, the

LDA correction method can significantly enhance TCC by 0.15

in the tropical western Pacific over the whole lead times from 3

to 9 months, along with the decrease of RMSE by 0.18C in the

equatorial Pacific. It is also worth noting that the improvement

of TCC skill is greater than 0.06 in the tropical Atlantic at the

FIG. 3. The spatial distribution of temporal correlation coefficient (TCC) between observational sea surface temperature anomaly

(SSTA) and (left) the CFSv2 corrected monthly prediction; (center) the CFSv2 raw prediction; and (right) the correlation coefficient

difference between both results for the lead time of (a)–(c) 3, (d)–(f) 6, and (g)–(i) 9 months, during January 1982–December 2018.
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lead time of 6 months. The variation of SST in the tropical

Atlantic plays an important role in South America (Cai et al.

2020), thus the improvement of the CFSv2 operational forecast

skill with the LDA correction method in the tropical Atlantic

contributes to early coping with seasonal climes for the people

living South America.

b. Performance of ENSO prediction correction

The corrections yielded by the LDA method are notably

well in the tropical Pacific region, especially in areas closely

related to the CP ENSO. Thus, we evaluate the corrected

performance of the Niño-4 index (58N–58S, 1608E–1508W),

which is one of themost important indicators of the CP types of

ENSO (Capotondi et al. 2015).

Figure 6a shows the correlation coefficient between obser-

vations and forecasts of the Niño-4 index during 1982–2018.

The correlation of the corrected results is consistently higher

than for the rawCFSv2 forecast, with the largest improvements

being for leads of 3–5 months. The correlation coefficient av-

eraged over 1–9 lead months is 0.84 (0.79) for the LDA-

corrected (raw) forecast, and the correction difference in

the lead time of 3–8 months, passes the 90% confidence

level of the bootstrapping test. RMSE values are shown in

Fig. 6b. The RMSE averaged over 1–9 lead months is 0.418C
for the raw results compared with 0.368C for the LDA-

corrected results, with the most significant improvement of

0.088C occurring at leads of 3–5 months. The mean corre-

lation and RMSE values show that the LDA correction

method helps to improve the Niño-4 index forecast of the

CFSV2 system and may help remedy the decrease in fore-

casting ability for ENSO resulting from the increased fre-

quency of CP ENSO occurrence since 2000 (Yeh et al. 2014;

Zheng et al. 2016).

The forecasting ability for ENSO varies with season, and

the most well-known phenomenon is the spring forecast

barrier (Duan and Wei 2013; Jin et al. 2008; Larson and

Kirtman 2017). Thus, we considered the forecasting ability of

the Niño-4 index at different initial calendar months during

1982–2018. Figure 7 shows the correlation coefficients and

Fig. 8 the RMSE values at different calendar months. The

black line represents the performance of the CFSv2 raw

forecast. The correlation coefficient of the CFSv2 raw fore-

cast is greater than 0.5 at all calendar times for different

forecast lead times, demonstrating the ability of CFSv2 to

forecast CP ENSO. However, there is a marked decrease in

correlation coefficient when the initial times are January,

February, and March, which corresponds to the ENSO

forecast barrier.

The red line in Figs. 7 and 8 display the corrected results

using the LDA method. The results show improvements in

correlation and RMSE in the LDA-corrected forecasts for

all lead months and in all initial calendar months. The im-

provements given by the LDA correction vary with forecast

lead time. The improvement given by the LDA correction

for medium (3–5 months) lead times is larger than that

for short (1–2 months) and long (8–9 months) lead times.

FIG. 4. As in Fig. 3, but for RMSE.
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This feature is particularly evident in RMSE (Fig. 8). The

smaller improvement given by the LDA correction method

at short forecast lead times is because the forecast error of

the CFSv2 raw product at these lead times is smaller. The

reduction of improvement in long forecast lead times may

result from the nature of the analog correctionmethod.As noted

above, the similarity of the forecast error is due to the similarity

of the initial state between state of interest and analog; there-

fore, the similarity of the forecast errors from state of interest

and analogs declines with increased forecast lead time. The

correction ability of the forecast error of analogs is weak.

It should be noted that the forecast barrier of the Niño-4
index is reduced by the LDA correction method in terms of

correlation coefficient (Fig. 7). Correlations of forecasts initi-

ated from January to March are increased by 0.1 and RMSE

values are reduced by 0.058C in the lead time of 3–6 months in

the LDA-corrected forecast results.

Although the LDA method yields improvements in

forecasting ability over the whole period, the evolutionary

trajectories of the Niño-4 index demonstrate more specific

performance cases. As a real-time SST forecast case, we

choose two recent strong events, El Niño event (2015/16)

and La Niña event (2010/11), to assess forecast results from

the raw forecast and the LDA-corrected forecast in Fig. 9.

For the 2015/16 El Niño event (Fig. 9a), the raw forecast

Niño-4 index initialized from February 2015 has too low a

peak value than in the observations. Meanwhile, the peak

of the raw forecasts occurs earlier initialized from May

2015. Encouraging results are obtained when the LDA

correction method is used. The peak value of the LDA-

corrected forecast becomes stronger and closer to the ob-

servations, and the peak time is improved. For the 2010/11

La Niña event, the intensity of the raw forecast results

initialized from February 2011 is too small and the forecast

peak value initialized from February 2011 is too larger

than in the observations. As a comparison, the corrected

forecast obtains a better forecast of La Niña intensity

in winter.

FIG. 5. The improvement of the forecast skill from the LDA correction method compared with the raw CFSv2

real-time forecast product during the period from May 2011 to December 2018. (a),(c),(e) TCC difference at the

lead time of 3, 6, and 9 months, respectively, and (b),(d),(f) RMSE difference.
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In addition, we also check the effect of historical data

volume on the improved performance of the LDA correc-

tion method (no shown). For SST forecast and ENSO

forecast, the results indicate the LDA correction method

always improves the model forecast results regardless of

the historical data amount, but the larger historical data-

sets to locate analog contribute the robust improvement

performance.

Overall, for the deterministic (ensemble mean) forecast, the

LDA correction method can further increase the correlation

coefficient and reduce the RMSE of Niño-4 index forecasts at

different initial calendar times by improving forecasts of the

intensity of the Niño-4 index. It is particularly useful that the

forecast barriers of the Niño-4 index for the initial times of

January, February, and March can be reduced using the LDA

correction method.

c. Performance of ENSO ensemble prediction correction

CFSv2 is an ensemble forecast system and can provide

probability forecast products. Thus, to demonstrate the im-

provement effect of this LDA correction method on proba-

bility forecast skill, we corrected the model ensemble forecast

product with 12members. It needs to be noted that the forecast

results averaged from the 12 members is different from the

model deterministic forecast results shown in the paper.

Therefore, their forecast correlation and RMSE skill are dif-

ferent. In this experiment, the number of the ensemble mem-

ber from CFSv2 products is 12. For each member, we operate

the model forecast correction using the LDA correction

method like as the deterministic forecast in the paper. The

corrected member forecasts are averaged to obtain the en-

semble mean forecast.

Figure 10 shows the RMSE and spread of Niño-4 index

forecast from the ensemble forecast results. Compared to the

raw ensemble forecast results, the LDA correction method

improves the forecast skill of each member and ensemble

mean. The ensemble spread of the raw forecast results of the

CFSv2 is lower than its corresponding RMSE, which implies

that the CFSv2 ensemble system underestimate the source of

error. The ensemble spread of the corrected ensemble forecast

results with the LDA correction method is reduced with

its corresponding RMSE skill. However, the ratio of the

ensemble spread to RMSE of the corrected ensemble

forecast of CFSv2 is lower than that of the raw ensem-

ble forecast. The negative effect to the ensemble spread

performance due to the LDA correction method may re-

sult from the fact that the LDA correction method re-

duces the state-dependent error of the model forecast,

which has some differences in these ensemble members.

When the state-dependent error in each member is re-

duced by the LDA correction method, the difference

among these ensemble members decreases, therefore, the

ensemble spread is lower than that of the raw model

forecast.

However, besides the ensemble spread, the ensemble pre-

diction has other evaluation indicators to describe the proba-

bility forecast skill. In ENSO prediction, we are interested in

the prediction of the La Niña (cold events) and El Niño (warm

events). In this part, the warm and cold events are chosen by

80% and 20% percentiles based on the observational Niño-4
index. The critical value of warm (cold) event is approximately

0.68C (20.68C).
Relative operating characteristic (ROC) is used to investi-

gate the relationship between the prediction hit rate and false

alarm rate of binary events (Wilks 2011). For a time, the pre-

dicted events (cold events or warm events) can occur or not.

The forecast results are evaluated by the corresponding ob-

servational conditions. ForN forecast times, the corresponding

FIG. 6. (a) Temporal correlation coefficients between observations and CFSv2 raw forecasts (black), and LDA-

corrected forecasts (red), for the Niño-4 index, during January 1982–December 2018. (b) Corresponding RMSE

values. The green dots represent the difference between the LDA-correction skill and raw skill pass the significant

level of 0.1 with the bootstrapping.
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observation shows that the number of events is H, and the

number of events not occurring is NH. We define the number

of forecast times as A when the observation event happens

and the model forecast happens, and as B when the ob-

servation event does not happen, and the model forecast

happens. Therefore, the hit rate of the kind of event can

be defined as A/H; the false alarm rate is B/NH. For

an event, the model members may forecast different re-

sults, thus the forecast event happening exists a ratio.

Choosing different ratios as the critical probability of

forecasting events, we can get different hit rates and false

alarm rates, which is ROC curve as shown in Figs. 11a–c.

The upper-left corner of the curve close to the coordinates

indicates that the ensemble forecast has high forecast

skills, while falling on the diagonal or right side of the gray

indicates that the forecasting skills are poor or even no

forecasting skills.

It can be seen from Figs. 11a–c that the ROC curves of cold

and warm events are distributed in the upper-left corner of

different forecast periods, and gradually approach the gray diag-

onal with the increase of forecast lead time, which indicates

that the CFSv2 system has certain probability prediction

skills for cold and warm events, but with the increase of

forecast duration, the prediction skills gradually decrease.

Compared to the raw forecast results, we find that the ROC

curves of the corrected forecast results always perform

better, which implies that the LDA correction method is

helpful to improve ensemble probability forecast skill.

To more intuitively show the evolution of ROC predic-

tion skill for cold and warm events with the lead time from

the raw and corrected model forecast, we define an ROC

area index (ROCA), which represents the area enclosed

by the ROC curve and the lower-right coordinate axis

(Wilks 2011):

FIG. 7. Temporal correlation coefficients between observations and forecasts for the Niño-4 index, initiated in each calendar month (as

marked) during January 1982–December 2018. The black line represents the CFSv2 raw prediction, and the red line is the CFSv2 forecast

corrected using the LDA method.
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where M is the critical probability classification number.

Figure 11d shows the evolution of ROCA with the forecast

lead time from the raw (dotted line) and corrected (solid

line) model forecast. The ROCA of cold and warm events is

greater than 0.5 in all the forecast lead times, which indi-

cates that CFSv2 has prediction skills for the two kinds of

events. With the increase of the lead time, the ROCA of

warm and cold events gradually decreases, which is consis-

tent with the intuitive results in Figs. 11a–c. Comparing the

solid lines with the dotted lines, we find that the ROCA of

the corrected model forecast always are larger at almost all

lead times, which indicates the fact that the LDA correction

method contributes to the improvement of ensemble prob-

ability forecast of CFSv2.

The Brier score (BS) is most used for verification of

probabilistic forecasts of dichotomous events. Thus, we use

the BS to verify the prediction skill of the warm and cold

event. The BS can be defined as the mean square probability

error (Wilks 2011):

BS5
1

N
�
N

i51

(f
i
2O

i
)
2
, (8)

where the index i denotes a numbering of theN forecast–event

pairs; fi is the forecast probability of the events occurring; if the

event happens, the observation Oi 5 1, and Oi 5 0 if the

event does not occur. In this form, the BS is anticorrelated

with the skill of the forecast: a higher BS represents a less

accurate prediction (Murphy 1973). The BS can take on

values only in the range 0# BS# 1. Figure 12 shows the BS

of warm and cold events evaluated for the raw model forecast

(dotted line) and the corrected forecast (solid line) as a function

of forecast time. At most lead times, the BS of the corrected

forecast is lower than that of the raw forecast, which implies that

the LDA-corrected forecast improves the performance of the

model forecast to predict cold and warm events.

FIG. 8. As in Fig. 7, but for RMSE.
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Although the corrected model forecast reduces the model

forecast RMSE and spread, but has poor performance in the

ratio of ensemble spread and RMSE, the LDA correction

method has a positive influence on the probability forecast skill

of warm and cold events.

4. Conclusions and discussion

There is forecast error in the numerical model forecast

products. Model forecast correction is convenient to im-

prove forecast skill. Considering analogs from large his-

torical data can reproduce the evolution of a dynamical

system to some extent, analogs can be applied to model

forecast correction, which is still a new problem although it

has been studied for a long time (e.g., Ding et al. 2020; Ren

and Chou 2007). The key question of the analog correction

scheme is how to locate analogs from historical dataset.

This paper focused on this question and applied the up-

dated LDA method to locate analogs. Compared with the

algorithm of the LDA method used by Li and Ding (2011)

and Hou et al. (2020), we adopted the unequal weight co-

efficients from RMSE of the persistent forecast to optimize

the expression of evolutionary information of the LDA

method in this paper.

In this study, we depicted the LDA correction scheme in

detail and extended its application scope to the operational

SST forecast products from the state-of-the-art coupled model

CFSv2. The operation steps have been described in this paper.

The experimental results showed that the performance of SST

forecast product is improved by the LDA correction method.

For the global SST forecast fromCFSv2, the correction reduces

RMSE values and increases correlation coefficients, espe-

cially in the tropical Pacific. The improvement of the model

forecast from the LDA correction method is more obvious

along with the increase of the lead time, which is useful to

improve model forecast skill in the long-term lead time and

increase the availability of forecast products. The ENSO

phenomenon is the dominant seasonal–interannual signal in

the tropical Pacific and an important forecast object. For

ENSO, the LDA correction method increases the accuracy

of the model forecast expressed in correlation increasing

and RMSE decreasing of the central and eastern tropical

SST. It is worth noting that CP ENSO represented by the

Niño-4 index and its related regions own higher forecast

skills by the LDA correction method. The seasonal pre-

dictability barrier of ENSO is also reduced by the LDA

correction, especially for spring, which alleviates the spring

forecast obstacle of the model. Besides improving the

model ensemble mean forecast skill, the LDA correction

method can also make a positive influence on the proba-

bility forecast results of ENSO cold and warm events, which

is a new aspect of the application of the analog correction

method. In this work, the LDA correction method has been

demonstrated to be an effective local analog-based method

to identify analogous trajectories and correct forecast

product from the CFSv2 model. The LDA correction

method requires low computing time and is easily applied

to different operational forecast products. We consider that

FIG. 9. Forecast Niño-4 index of the raw model forecast (gray)

and the corrected model forecast by the LDA correction method

(red) of (a) the 2015/16El Niño event and (b) that of the 2009/10 La
Niña event.

FIG. 10. The RMSE (solid line) and ensemble spread (dotted

line) of the Niño-4 index from the ensemble forecast results (m01–

m12) of CFSv2 over the period from January 1982 to December

2018. The gray lines are the RMSE skill of each member raw

forecast results, and the light red lines represent the corrected re-

sults using the LDA correction method. The ensemble means are

marked as the solid black line (raw forecast) and the solid red line

(corrected forecast).
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the LDA correction method offers a feasible approach for

combining historical data and model operational forecast

results.

For the analog correction method, the amount of data

available is important to impact the correction performance.

However, the data amount to be used to locate analogs is

always limited due to the observation data. For the LDA

correction method, we also evaluated its performance under a

different volume of historical data (no shown). The results

demonstrate the LDA correction method always improves the

forecast skill of ENSO. However, as more historical data are

used, the improved performance of the LDA correction

method is more robust.

Besides evolutional information used by the LDA method,

local analog is also an important property of the LDAmethod.

The local feature focused by the LDA method helps to reduce

the dimension of the focused system. As detailed by van den

Dool (1994), the number of elements in a dataset required to

guarantee the retrieval of analogs at a given precision grows

exponentially with the intrinsic dimension of the state.

Consequently, it is unrealistic to directly apply analog strat-

egies to state spaces with an intrinsic dimensionality above 10,

meaning that global analog forecasting operators are likely to

be inappropriate for high-dimensional systems. In contrast,

local analogs provide a means to decompose the analog cor-

rection of the high-dimensional state into a series of local and

low-dimensional analog correction operations, which play a

positive role in locating analog with quality. However, the

spatial structure also contains the dynamical information of

the system and needs to be used to locate the analog while the

LDAmethod only used the time series of SST on each grid in

this paper. Therefore, the LDA method will introduce the

FIG. 11. Relative operating characteristic (ROC) curve for thewarm (blue) and cold (red) events based onNiño-4
index in the lead time of (a) 3, (b) 6, and (c) 9months. (d) ROC area of theNiño-4 index. The red line represents the
cold event, and the blue line represents thewarm event. The solid line is the correctedmodel forecast and the dotted

line is the raw model forecast.
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spatial evolutional structure meanwhile keeping the local

analog in the future.

The analog correction method improves the model forecast

using statistical information from analogs by reducing model

state-dependent forecast error. The analog correction method

has an application premise that the model has the capacity to

describe the dynamical process and its model forecast errors

has similar state-dependent parts. Thus, in these regions

where the raw model forecast skill is low, the improvement of

forecast skill from the LDA correction method is not obvious

and even negative. As a contrast, in these regions that cor-

respond to the high forecast skill, the proportion of improved

grid points from the LDA correction method is larger (as

shown in Fig. 13). Therefore, the capacity of the model to

depict the dynamical system and the theoretical predictability

limit of the dynamical system affect the performance of the

analog correction, which is valuable to be studied in the future.
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