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ABSTRACT: Numerical seasonal forecasts in Earth science always contain forecast errors that cannot be eliminated
by improving the ability of the numerical model. Therefore, correction of model forecast results is required. Analog
correction is an effective way to reduce model forecast errors, but the key question is how to locate analogs. In this
paper, we updated the local dynamical analog (LDA) algorithm to find analogs and depicted the process of model
error correction as the LDA correction scheme. The LDA correction scheme was first applied to correct the opera-
tional seasonal forecasts of sea surface temperature (SST) over the period 1982-2018 from the state-of-the-art coupled
climate model named NCEP Climate Forecast System, version 2. The results demonstrated that the LDA correction
scheme improves forecast skill in many regions as measured by the correlation coefficient and root-mean-square error,
especially over the extratropical eastern Pacific and tropical Pacific, where the model has high simulation ability. El
Nifio—Southern Oscillation (ENSO) as the focused physics process is also improved. The seasonal predictability
barrier of ENSO is in remission, and the forecast skill of central Pacific ENSO also increases due to the LDA correction
method. The intensity of the ENSO mature phases is improved. Meanwhile, the ensemble forecast results are corrected, which
proves the positive influence from this LDA correction scheme on the probability forecast of cold and warm events. Overall,
the LDA correction scheme, combining statistical and model dynamical information, is demonstrated to be readily integrable
with other advanced operational models and has the capability to improve forecast results.
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1. Introduction dependent corrections are therefore needed to reduce re-
sidual components and further improve forecasts.

Earth science has benefited from the proliferation of satel-
lite data, in situ monitoring, and numerical simulations in re-
cent years. Large databases of valuable information have been
collected for oceanic and atmospheric science. Lorenz (1969)
exploited the availability of such datasets facilitates the iden-
tification of states similar to a dynamic system of interest.
Analogs, phenomena of atmospheric and oceanic nonlinear
evolution, have been widely used in predictability and forecast
studies. Based on analogs of the data, Hamill and Whitaker
(2006) provided an underlying theoretical basis for refor-
ecast analogs and applied them in probabilistic quantitative
precipitation forecasts. Lguensat et al. (2017) focused on the
field of data assimilation and developed an analog data as-
similation technique. The analog data also have been used
to develop a model-analog method to forecast tropical
oceanic and atmospheric variables (Ding et al. 2018, 2019,
2020), which provided a novel view and method of opera-
bility to forecast climate variation on seasonal scale. This
method selected the nearest model states from a long con-
trol run of a coupled general circulation model as analogs to
the observed initial state; then their evolution within the
control run provides the model-analog forecasts. The model-
analog ENSO hindcast skill matches or even exceeds traditional
assimilation-initialized forecast skill when being applied to the
same model (Ding et al. 2018, 2019, 2020). These researches
Corresponding author: Jianping Li, ljp@ouc.edu.cn have demonstrated the usefulness of analogs in inversions of the

Models in Earth science are an important tool for ana-
lyzing physical processes and forecasting natural conditions.
However, a model always has shortcomings related to its
numerical and physical parameterizations, initial condi-
tions, and external forcing. Many studies have attempted to
optimize model parameterization and improve the models’
vertical and horizontal resolutions (Dai et al. 2003; Feng
et al. 2013; Hourdin et al. 2017; Medvigy et al. 2010; Zhu
et al. 2017). However, the development and improvement
of a model can be a slow and computationally demanding
process. Correction methods to improve numerical models
are an effective way to improve the performance of nu-
merical models. The correction schemes for model forecast
error correction can be divided into state-independent and
state-dependent methods (Danforth and Kalnay 2008).
Generally, statistical methods to correct model forecast
errors are state-independent corrections, such as model output
statistics (MOS) (Carter et al. 1989; Glahn and Lowry 1972; Xu
and Yang 2012). However, state-independent corrections can
reduce only the systematic component of model forecast errors
(Delsole and Hou 1999; DelSole et al. 2008). Considering that
state-dependent components constitute the majority of total
model forecast errors (Dalcher and Kalnay 1987), state-
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844 WEATHER AND
evolving trajectories of a dynamic system in statistics. Numerical
models represent the evolution of the system in dynamics. So,
can analogs be used to correct numerical model forecast results
and improve the forecast skill? Once the forecast state can be
regarded as a small disturbance superimposed on historical an-
alogs, statistical techniques from analogs can be used in combi-
nation with model dynamical forecasts (Gao et al. 2006; Huang
et al. 1993; Ren and Chou 2006, 2007). Following this idea, Ren
and Chou (2007) used the estimated forecast error to predict a
final analog correction of errors and showed that this method
can to some extent reduce prediction errors and improve pre-
diction ability in forecast results of summer mean circulation and
total precipitation. The analog correction method to model
forecast results does not require a new model to be built; instead,
it can be applied to existing numerical models and observational
data. However, the key question of the analog correction
method is how to locate an analog for the interest of state ef-
fectively (Badr et al. 2016; Liu and Ren 2017; Ren et al. 2009).
The analog correction scheme is a promising approach to im-
prove model forecast skill. However, in recent years, there are
few studies related to how to locate an analog.

Analogs of the observational data are located using the local
dynamical analog (LDA) method in the predictability studies
(Ding et al. 2016; Li and Ding 2013, 2015; Li et al. 2018). Li and
Ding (2011) demonstrated the benefits of using LDAs in lo-
cating analogous states compared with other local analog-
based methods. The LDA method ensures similarity between
the dynamical evolution of both states instead of considering
only their initial states, which contributes to locate analog with
high quality. However, the traditional LDA method is used
for diagnosis problems but not for forecast correction ap-
plications. Therefore, Hou et al. (2020) updated the LDA
method meanwhile ensuring the physical meaning of the
LDA method. In Hou et al. (2020), the LDA correction
method has been applied to an intermediate coupled model
of El Niio—Southern Oscillation (ENSO), which confirmed
that the LDA correction method can locate high quality analogs
of focused states compared to other analog methods and im-
prove model forecast performance. The LDA method is a
promising method to be applied to existing numerical models
and improve forecast skill. However, the LDA correction
method has not yet been applied to operational state-of-the-art
air-sea coupling models.

Seasonal predictions of sea surface temperature (SST) can
be applied in positive ways to benefit society and economy and
are now routinely produced at many operational centers using
numerical models (e.g., Barnston et al. 2012; Saha et al. 2014;
Stockdale et al. 2011). However, the accuracy of SST predic-
tions is still limited (Xue et al. 2013). As an operational sea-
sonal forecast model, National Centers for Environmental
Prediction (NCEP) Climate Forecast System version 2 (CFSv2)
offers routinely forecast products up to the lead time of 9 months
in recent decades and has been shown to have a certain skill in
seasonal climate prediction (Saha et al. 2014). Therefore, in this
paper, we will describe systematically the application steps of the
LDA correction scheme and correct the SST operational fore-
casts of CFSv2. Besides correct the deterministic forecast, we
first apply the analog correction method to model ensemble
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forecast and evaluate the improvement of the probability fore-
cast skill from the LDA correction method. The rest of the paper
is organized as follows: the method and data used are introduced
in section 2, results are described in section 3, and section 4
presents the main conclusions and discussions.

2. Method and data
a. Data

In this work, we apply the LDA correction method to the
operational forecast of SST from the CFSV2. The predictions
are initialized in all calendar months from January 1982 to
December 2018 (Saha et al. 2014; Xue et al. 2013). For each
year, predictions were produced at 1° X 1° horizontal resolu-
tion out to a lead time of 9 months for the period 1982-2018.
In this paper, the forecast used is the deterministic (en-
semble mean) forecast results. Meanwhile, the ensemble
members m01-m12 of CFSv2 are also corrected by the
LDA-corrected method.

For verification, the monthly SSTs from the optimum in-
terpolation sea surface temperature, version 2 (OISSTv2),
dataset are the observational data used and have a horizontal
resolution of 1°in latitude and longitude (Reynolds et al. 2002).

Before applied to the analog correction experiment, the
CFSv2 dataset and OISSTv2 have been processed, including
removing climate state and tendency to get anomalies, and
removing forecast drift. Similar to Hu et al. 2014, due to the
impact of a discontinuity in the ocean component, two climate
states are used to compute the anomalies both for CFSv2
predicted and OISSTV2 analyzed (Xue et al. 2013; Kumar et al.
2012). The first climatology is the average between January
1982 and December 1998, and the second one between January
1999 and December 2018. Then, SST data both from the CFSv2
forecast and OISSTVv2 analysis are removed the least squares
linear trend of the time dimension from all grid points. The
climate drift of the forecast results in different lead time have
been also removed.

b. Method

The analog correction method takes advantage of model
forecast errors of analogous states in historical data, which are
retrieved in advance, to correct forecast results of the state of
interest whose subsequent actual conditions have not yet been
observed. The key question of the analog correction method is
how to locate analog. In this paper, we used the LDA method.

The LDA method was first proposed to estimate the sys-
tem’s predictability by Li and Ding (2011). They demonstrated
the benefits of this approach in locating analogous states in
comparison with other analog location methods. The LDA
method ensures similarity between the dynamical evolution
of both states in addition to similarities in their initial states.
To apply the LDA method to the model correction, Hou
et al. (2020) updated the algorithm. Given state y,(¢;) (the
state-of-interest, representing an observational state) and
its possible analog point y,(t;) from the historical dataset
pool, the initial distance d; between these two points is given
by d; = |ly.(t;) — yu(tr)||, where || || represents the norm
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distance. Within the initial evolutionary interval LA, where A is
the sampling interval of the time series (i.e., A =, — t;_;) and L is
chosen as the number of sampling intervals over the evolutionary
interval, the evolutionary distance d, between points y(#;) and y(#;)
is given by (Hou et al. 2020)

- \/iz 19,(6) = ¥t M

Thus, the total distance d, between state points y(#;) and
y(#), considering not only the initial distance, but also the
evolutionary distance, is defined by adding d; and d, (i.e., d, =
d; + d,). The term d, represents the dynamical information. If
d, is exceedingly small, it is highly likely that the points y,(t)
is a local dynamical analog point of y,(#;). Thus, analog states of
the LDA method are identified using initial and evolutionary
information at two distinct time points in the time series
under a system with reduced dynamical dimension. In contrast,
traditional approaches to locating analogous states only con-
sider similarities in initial spatial structures, which ignores
dynamical evolution information, meanwhile based on the
spatial structure of variable field whose analogs need be found
in more data.

However, the state distance between a focused state and its
initial-near states in the phase space increases with the
dynamical system developing, the same for the focused
state and its analogs. Thus, when locating an analog, the
state distance |[y.(t;—;) — y(tx—;)|| in the lead time of j al-
ways is large compared to that ||y,(t;—1) — y(tx—1)|| in the
lead time of j = 1. Thus, the originated evolutional distance

= \/(1/L)ZJ.L:l Iy, (ti-i) — y(lk_j)H2 gives more weight to the
state distance far from the focused time. For example,
[lya(ti—r) — y(tr—r)|| is the developed state distance and
always is larger than ||y,(¢;—1) — y(tx—1)||- Compared to the
pairs ¢,—; and t,_; which are more adjacent to the focused
state time t; and #x, ||y.(t;i—r) — y(tx—r)|| should have less
weight to reduce error growth effect due to the condition
of t;_; and t;_; far from the focused state time ¢; and t;.
Thus, the formula (1) with equal weight exists some defi-
ciency in view of error growth dynamics.

To get to unequal weight coefficient, we should acquire the
averaged error growth rate of two initial-near states in the
phase space. In forecast concept, the initial state to forecast is
the analog state of real state. Considering that the forecast for
the future state can be made simply by persistent forecast re-
sults, which can be regarded as the adjacent states in the space
phase under less stringent constraints. Therefore, based on the
persistent forecast results, we modified d, as

\/ Xyt ) = v, (4 )IF {‘;ﬁiﬁ%ﬂ ®

where RMSEC()) is root-mean-square error (RMSE) of per-
sistent forecast compared with observation at the lead time of j.
With experiment proving, this modification made error evo-
lutional conditions more authentic and improved the correc-
tion performance.
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Due to the application of the LDA method, we focus on the
variable on each grid of SST field. Thus, we replace the vector
variable y,, with the time series variable y,. The || || can be
regarded as the absolute operation |-|. After getting the analog
va(te) of the focused states y,(f;), model forecast error pre-
dicting from the initial time ¢ to time f;; can be described as
follows:

ej(tk) :y]f,j(tk) _ya(lk+j)a (3)

where y;(t) is the model forecast value at the lead time of j
from y,(t), f represents the forecast result. As a possible an-
alog of y,(t;), y.(x) is the model initial state to predict the state
yri(ti) at the time of #,; Meanwhile, the subsequent obser-
vational value y,(#;) corresponding to y(f;) has been also
observed/provided. Therefore, the model forecast error ej(tx)
can be calculated as the formula (3). For the state of interest
Ya(t;), its model forecast value in the lead time of j is ys(#;),
which is known. However, y,(t;+;) is the future observation
which is unknown. Model forecast result always deviates
from its corresponding observation value. Therefore, the
forecast error e;(t;) exists and is unknown but wants to be
known. The observational analog state in the historical
dataset is known, and the model forecast results and forecast
error are also known.

Based on the thought of the analog correction method, e;(#x)
is similar to e/(f;), to some extent, when y,(#) is the analog state
of y,(;). Therefore, e[(t;) can be estimated or corrected by
ej(tx). Considering that the forecast errors always contain some
random part, the correction of e,(t;) is performed from aver-
aged forecast errors from several analogs with the linear re-
gression way. When M-nearest analog states are considered for
the state of interest, the mean analog forecast error ¢;(#) is
Z,AZ: 16j(tx,,)/M and the estimation of ej(#;) can be described as
follows:

é/'(t,') :Olj%‘ﬁ‘ﬁi, (4)
where «; and §; are parameters in the lead time j which can be
determined by the linear regression based on the training data.
Thus, ¢(t;) can be partially eliminated by ¢é;(t;) and the model
forecast y;;(t;) can be corrected as

}A)f,j(ti) :ny(ti) - éj(t,')' (5)

The diagram of the LDA correction scheme is shown in
Figs. 1 and 2 displays flowchart of the LD A correction method.
In this paper, the updated LDA correction method is applied

to correct the CFSv2 SST. The model forecast SST is a field
variable. Here, we locate analog using the time series in
every grid as y(t;). The SST time series at each grid is con-
sidered, respectively, by the LD A-analog method. Namely,
va(t;) represents SST time series at a grid rather than con-
sidering space domains in this paper, which is due to the
time series at one grid having small dimensional informa-
tion and is more likely and simple to locate analog for the
state of interest. Based on the time series data at a grid, the
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FIG. 1. The diagram of the LD A correction method to correct the model forecast. The term y,(¢;) is the focused observational state at the
time #;, and y,(#) represents its possible analog in the historical observation. The term y;,(#;) is the forecast at the lead time of j from the
initial state y,(t;), which corresponds to y,(#;;).

analog is located based on the updated LDA method, in- Then, we can sort these potential states from small to large
cluding initial distance information and dynamical evolu- based on the distance of the LDA method. In this paper, we
tional information. From the theoretical formula of the used N = 6 analogs with the smallest distance as the po-
updated LDA method, there are some key parameters tential analogs.
to be set. Third, we need to choose the final analogs from the potential
First, the window span L in the LDA method is important  analogs. The forecast results of each analogs have been known,
for getting analog with high quality. According to Li and Ding  as to the forecast results of the focused state. We can calculate
(2013), the number of the window span L is related to the the correlation coefficient between the analogs’ forecast results
autocorrelation coefficient of the data series. Through testing, and the focused state’s forecast results during the forecast

we chose the windows span L = 6 as lead months. period of F months (F = 9), that is,
Second, for every focused state, the potential analog .
states are limited to historical states with the same season. In
operation, the other years’ calendar months of the analog Z{{ [yff(t) Mf(z )][y/f(l ) Mf(z )]}
are restricted to 3 months relative to that of the state of corr{tkm,tl) - 9
interest. For example, choosing the SST state at one grid in \/2 [yfj(ti) - ,ll,f(ti)] \/Z [yf!j(zk )— /”“f(zk )]
December 1997 as the state of interest, we regard states in =1 =t " "
October—February of 1982-95 as the possible analog states. (6)
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[The correction of model forecast with the LDA method ]

Step 1: Select the suitable historical samples for the focused state: the
same season with the focused states.

Step 2: Obtain the first N possible analog states with the updated LDA
method.

Step 3: Select M analog states from N: maximum correlation between the
forecast trajectories of the focused state and those of analogs.

Step 5: Acquire the estimated value of model forecast error.

Step 6: Correct the model forecast of the focused states.

]

[ Model corrected forecast products ]

[Step 4: Obtain the model forecast errors of the analog states. ]

FIG. 2. Flowchart of the LDA correction method, which corre-
sponds to Fig. 1.

where y¢;(t;) is the SST forecast results initialized from ¢; at
the lead time of j. The term uyis the mean of forecast results
over the forecast period of F = 9, and #,, is the time of the mth
analog states of the focused state. Based on the correlation
coefficient gotten from formula (6), We chose M = 3 analogs
owning the highest values from six potential analogs as the final
analog states and then get their average forecast error.

Fourthly, based on the averaged analog forecast errors,
forecast results initialized from the focused state can be cor-
rected with linear regression parameters «; and 8;. The pa-
rameters «; and 8; are determined by the linear regression
process with the real forecast errors of focused states and its
averaged analog forecast errors in the training period. Because
of the limited amount of data, the training period is chosen
by sliding selection checking off 12 months from the time of
focused states. For example, when correcting the forecast
results initialized from January 1997, the forecast data from
CFSv2 and observational data over the period January
1982-December 1995 and January 1998-December 2018 is
regarded as the training dataset. Based on the training
dataset, we can get the real forecast errors and its averaged
analog errors for every state. The line regression parameter
can be evaluated by both forecast errors.

3. Results

In this section, to demonstrate the feasibility and effective-
ness of the LDA correction method in operational seasonal
prediction of SST, we corrected global monthly SST forecast
from CFSv2 and used a sliding window method to divide the
prediction data into two parts: training samples and testing
samples. When the forecast result initiating from a focused
state required correction, other forecast results whose initial
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times were separated from state of interest time by >12 months
were used to locate analog states. The raw and corrected
SST forecast from CFSv2 were assessed by calculating the
temporal correlation coefficient (TCC), and the root-mean-
square error (RMSE) between model predictions and
OISSTV2, for all initial calendar months and at lead times
from 1 to 9 months.

a. Performance of SST field correction

Figure 3 shows the values of TCC between observations and
the CFSv2 model forecast of SST during 1982-2018 for each
grid cell in the global domain at 3, 6, and 9 lead months. The
first column (Figs. 3a,d,g) represents the performance of the
LDA correction, the second column (Figs 3b,e,h) corresponds
to the performance of the raw CFSv2 forecast, and their dif-
ference is shown in the third column (Figs. 3cf,i). The raw
CFSv2 model has a reasonable ability to predict the global SST
at a lead time of 3 months, especially in most areas of the
central and eastern tropical Pacific, tropical Indian ocean, and
the tropical Atlantic Ocean, where the highest levels of ACC
forecasting ability are found in the tropical Pacific (second
column of Fig. 3). In the tropical central and eastern Pacific,
especially Nifio-3.4 region bounded by 5°N-5°S, from 170° to
120°W, the TCC can reach 0.7 at a lead time of 3 months,
which shows that CFSv2 predicts seasonal variation of SST
due to ENSO moderately well (Barnston and Tippett 2013).
With increasing forecast lead time, the TCC decreases, and
the areas with TCC of >0.6 are concentrated mainly in the
tropical central Pacific at a lead time of 9 months. However,
the raw CFSv2 forecast has weak ability to simulate SST
variation of extratropical regions and specially yields a low
correlation coefficient in the North Atlantic, Arctic Ocean,
and the South Indian Ocean at lead times of 6 months
and longer.

Corrected by the LDA correction method, the prediction
skill of SST in CFSv2 is improved (first column of Fig. 3), which
is most evident in the difference between the LD A-corrected
forecasts and the raw forecasts (Figs. 3c.f,i). Positive differ-
ences correspond to an improvement in the TCC skill due to
the LDA correction method. For lead times of 3, 6, and
9 months, TCC increases in many spatial grid cells. The im-
provement yielded by the LDA correction method is not
evenly distributed in space and is concentrated chiefly in the
tropical central and eastern Pacific, the extratropical eastern
Pacific, the Southern Ocean, and the Arctic Ocean. The TCC
increases by >0.12 over the western and central tropical Pacific
at 3 lead months, which implies that the LDA correction
method may contribute to the prediction of the central Pacific
(CP) ENSO. With an increase in lead months, the area of im-
provement in the western and central tropical Pacific at
3 months lead gradually expands east and extratropical over
the Pacific, covering key areas for the development of the CP
ENSO (Kao and Yu 2009; Wang et al. 2017). These areas,
where the LDA method gives a large improvement, may cor-
respond to areas where there are large differences between the
model operational forecasting ability and the predictability
limit for SST. For example, Newman and Sardeshmukh (2017)
suggest that the forecasting ability of SST in the equatorial
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FIG. 3. The spatial distribution of temporal correlation coefficient (TCC) between observational sea surface temperature anomaly
(SSTA) and (left) the CFSv2 corrected monthly prediction; (center) the CFSv2 raw prediction; and (right) the correlation coefficient
difference between both results for the lead time of (a)-(c) 3, (d)—(f) 6, and (g)—(i) 9 months, during January 1982-December 2018.

Pacific is currently much lower than the predictability limit,
which means that the improvement from the LDA correction
method in this region is useful.

Figure 4 shows the RMSE values between observations and
forecast results. RMSE values of SST increase globally with
increasing lead time. Clearly, some regions, such as the
Kuroshio region, Gulf Stream, and cold tongue region of
the Pacific, have large RMSE values because of their large
variances. After applying the LDA-correlation method, the
RMSE in some regions is reduced, especially the tropical
Pacific. As for the results for TCC (Fig. 3), clear improve-
ments in RMSE are found in the eastern tropical Pacific.
The RMSE value over the tropical eastern Pacific is re-
duced by 0.08°C at the lead time of 3, 6, and 9 months (third
column of Fig. 4).

There are some regions that are worse with the correction of
the LDA method, such as the western equatorial Pacific, North
and South Pacific and tropical Indian Ocean. However, the
western equatorial Pacific, North and South Pacific and tropi-
cal Indian Ocean are also the regions that have worse forecast
performance in the raw forecast of CFSv2 in Figs. 3b, 3e, 3h, 4b,
4e, and 4h, which implies the deficiency of the CFSv2 in rep-
resenting the evolutional process in these areas. In the extra-
tropical region, the atmosphere has an important role in the
evolution of SST, which brings in noise and reduce the pre-
dictability limit of SST. The CFSv2 model has low forecast skill
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in the extratropical region. The deficiency of the model to
describe physics may lead to the increase of the randomness
in the model forecast error, which is not the part of state-
dependent error. The LDA correction method that mainly
reduces the state-dependent error, therefore, has worse
performance in these regions where the model does not have
the capacity to describe its physical mechanism (shown
in Fig. 13).

The CFSv2 forecast product consists of the reforecast and
real-time forecast process. The CFSv2 reforecast covers January
1982-March 2011. The operation forecast has operated since
May 2011. To further demonstrate the convenience and effec-
tiveness of the LDA correction method to real-time seasonal
prediction, we focused on the real-time forecast product of
CFSv2. Here, we corrected the forecast results since May 2011
used the dataset from January 1982 to March 2011 as the training
period to fit linear regression parameters and as the historical
dataset to locate the analog. The improved performance from
the LDA correction method is shown in Fig. 5 in terms of TCC
and RMSE. We find the improvement is more obvious in this
period than that of the results from Fig. 3 and Fig. 4. In Fig. 5, the
LDA correction method can significantly enhance TCC by 0.15
in the tropical western Pacific over the whole lead times from 3
to 9 months, along with the decrease of RMSE by 0.1°C in the
equatorial Pacific. It is also worth noting that the improvement
of TCC skill is greater than 0.06 in the tropical Atlantic at the
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FIG. 4. As in Fig. 3, but for RMSE.

lead time of 6 months. The variation of SST in the tropical
Atlantic plays an important role in South America (Cai et al.
2020), thus the improvement of the CFSv2 operational forecast
skill with the LDA correction method in the tropical Atlantic
contributes to early coping with seasonal climes for the people
living South America.

b. Performance of ENSO prediction correction

The corrections yielded by the LDA method are notably
well in the tropical Pacific region, especially in areas closely
related to the CP ENSO. Thus, we evaluate the corrected
performance of the Nifio-4 index (5°N-5°S, 160°E-150°W),
which is one of the most important indicators of the CP types of
ENSO (Capotondi et al. 2015).

Figure 6a shows the correlation coefficient between obser-
vations and forecasts of the Niflo-4 index during 1982-2018.
The correlation of the corrected results is consistently higher
than for the raw CFSv2 forecast, with the largest improvements
being for leads of 3—5 months. The correlation coefficient av-
eraged over 1-9 lead months is 0.84 (0.79) for the LDA-
corrected (raw) forecast, and the correction difference in
the lead time of 3-8 months, passes the 90% confidence
level of the bootstrapping test. RMSE values are shown in
Fig. 6b. The RMSE averaged over 1-9 lead months is 0.41°C
for the raw results compared with 0.36°C for the LDA-
corrected results, with the most significant improvement of
0.08°C occurring at leads of 3-5 months. The mean corre-
lation and RMSE values show that the LDA correction
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method helps to improve the Nifio-4 index forecast of the
CFSV2 system and may help remedy the decrease in fore-
casting ability for ENSO resulting from the increased fre-
quency of CP ENSO occurrence since 2000 (Yeh et al. 2014;
Zheng et al. 2016).

The forecasting ability for ENSO varies with season, and
the most well-known phenomenon is the spring forecast
barrier (Duan and Wei 2013; Jin et al. 2008; Larson and
Kirtman 2017). Thus, we considered the forecasting ability of
the Nifio-4 index at different initial calendar months during
1982-2018. Figure 7 shows the correlation coefficients and
Fig. 8 the RMSE values at different calendar months. The
black line represents the performance of the CFSv2 raw
forecast. The correlation coefficient of the CFSv2 raw fore-
cast is greater than 0.5 at all calendar times for different
forecast lead times, demonstrating the ability of CFSv2 to
forecast CP ENSO. However, there is a marked decrease in
correlation coefficient when the initial times are January,
February, and March, which corresponds to the ENSO
forecast barrier.

The red line in Figs. 7 and 8 display the corrected results
using the LDA method. The results show improvements in
correlation and RMSE in the LDA-corrected forecasts for
all lead months and in all initial calendar months. The im-
provements given by the LDA correction vary with forecast
lead time. The improvement given by the LDA correction
for medium (3-5 months) lead times is larger than that
for short (1-2 months) and long (8-9 months) lead times.
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This feature is particularly evident in RMSE (Fig. 8). The
smaller improvement given by the LDA correction method
at short forecast lead times is because the forecast error of
the CFSv2 raw product at these lead times is smaller. The
reduction of improvement in long forecast lead times may
result from the nature of the analog correction method. As noted
above, the similarity of the forecast error is due to the similarity
of the initial state between state of interest and analog; there-
fore, the similarity of the forecast errors from state of interest
and analogs declines with increased forecast lead time. The
correction ability of the forecast error of analogs is weak.

It should be noted that the forecast barrier of the Nifio-4
index is reduced by the LDA correction method in terms of
correlation coefficient (Fig. 7). Correlations of forecasts initi-
ated from January to March are increased by 0.1 and RMSE
values are reduced by 0.05°C in the lead time of 3—6 months in
the LDA-corrected forecast results.

Although the LDA method yields improvements in
forecasting ability over the whole period, the evolutionary
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trajectories of the Nifio-4 index demonstrate more specific
performance cases. As a real-time SST forecast case, we
choose two recent strong events, El Nifio event (2015/16)
and La Nifia event (2010/11), to assess forecast results from
the raw forecast and the LD A-corrected forecast in Fig. 9.
For the 2015/16 El Nifio event (Fig. 9a), the raw forecast
Nifio-4 index initialized from February 2015 has too low a
peak value than in the observations. Meanwhile, the peak
of the raw forecasts occurs earlier initialized from May
2015. Encouraging results are obtained when the LDA
correction method is used. The peak value of the LDA-
corrected forecast becomes stronger and closer to the ob-
servations, and the peak time is improved. For the 2010/11
La Nifia event, the intensity of the raw forecast results
initialized from February 2011 is too small and the forecast
peak value initialized from February 2011 is too larger
than in the observations. As a comparison, the corrected
forecast obtains a better forecast of La Nifa intensity
in winter.
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In addition, we also check the effect of historical data
volume on the improved performance of the LDA correc-
tion method (no shown). For SST forecast and ENSO
forecast, the results indicate the LDA correction method
always improves the model forecast results regardless of
the historical data amount, but the larger historical data-
sets to locate analog contribute the robust improvement
performance.

Overall, for the deterministic (ensemble mean) forecast, the
LDA correction method can further increase the correlation
coefficient and reduce the RMSE of Nifio-4 index forecasts at
different initial calendar times by improving forecasts of the
intensity of the Nifio-4 index. It is particularly useful that the
forecast barriers of the Nifio-4 index for the initial times of
January, February, and March can be reduced using the LDA
correction method.

¢. Performance of ENSO ensemble prediction correction

CFSv2 is an ensemble forecast system and can provide
probability forecast products. Thus, to demonstrate the im-
provement effect of this LDA correction method on proba-
bility forecast skill, we corrected the model ensemble forecast
product with 12 members. It needs to be noted that the forecast
results averaged from the 12 members is different from the
model deterministic forecast results shown in the paper.
Therefore, their forecast correlation and RMSE skill are dif-
ferent. In this experiment, the number of the ensemble mem-
ber from CFSv2 products is 12. For each member, we operate
the model forecast correction using the LDA correction
method like as the deterministic forecast in the paper. The
corrected member forecasts are averaged to obtain the en-
semble mean forecast.

Figure 10 shows the RMSE and spread of Nifio-4 index
forecast from the ensemble forecast results. Compared to the
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raw ensemble forecast results, the LDA correction method
improves the forecast skill of each member and ensemble
mean. The ensemble spread of the raw forecast results of the
CFSv2 is lower than its corresponding RMSE, which implies
that the CFSv2 ensemble system underestimate the source of
error. The ensemble spread of the corrected ensemble forecast
results with the LDA correction method is reduced with
its corresponding RMSE skill. However, the ratio of the
ensemble spread to RMSE of the corrected ensemble
forecast of CFSv2 is lower than that of the raw ensem-
ble forecast. The negative effect to the ensemble spread
performance due to the LDA correction method may re-
sult from the fact that the LDA correction method re-
duces the state-dependent error of the model forecast,
which has some differences in these ensemble members.
When the state-dependent error in each member is re-
duced by the LDA correction method, the difference
among these ensemble members decreases, therefore, the
ensemble spread is lower than that of the raw model
forecast.

However, besides the ensemble spread, the ensemble pre-
diction has other evaluation indicators to describe the proba-
bility forecast skill. In ENSO prediction, we are interested in
the prediction of the La Nifia (cold events) and El Nifio (warm
events). In this part, the warm and cold events are chosen by
80% and 20% percentiles based on the observational Nifio-4
index. The critical value of warm (cold) event is approximately
0.6°C (—0.6°C).

Relative operating characteristic (ROC) is used to investi-
gate the relationship between the prediction hit rate and false
alarm rate of binary events (Wilks 2011). For a time, the pre-
dicted events (cold events or warm events) can occur or not.
The forecast results are evaluated by the corresponding ob-
servational conditions. For N forecast times, the corresponding
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observation shows that the number of events is H, and the
number of events not occurring is NH. We define the number
of forecast times as A when the observation event happens
and the model forecast happens, and as B when the ob-
servation event does not happen, and the model forecast
happens. Therefore, the hit rate of the kind of event can
be defined as A/H; the false alarm rate is B/NH. For
an event, the model members may forecast different re-
sults, thus the forecast event happening exists a ratio.
Choosing different ratios as the critical probability of
forecasting events, we can get different hit rates and false
alarm rates, which is ROC curve as shown in Figs. 11a—c.
The upper-left corner of the curve close to the coordinates
indicates that the ensemble forecast has high forecast
skills, while falling on the diagonal or right side of the gray
indicates that the forecasting skills are poor or even no
forecasting skills.
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It can be seen from Figs. 11a—c that the ROC curves of cold
and warm events are distributed in the upper-left corner of
different forecast periods, and gradually approach the gray diag-
onal with the increase of forecast lead time, which indicates
that the CFSv2 system has certain probability prediction
skills for cold and warm events, but with the increase of
forecast duration, the prediction skills gradually decrease.
Compared to the raw forecast results, we find that the ROC
curves of the corrected forecast results always perform
better, which implies that the LDA correction method is
helpful to improve ensemble probability forecast skill.

To more intuitively show the evolution of ROC predic-
tion skill for cold and warm events with the lead time from
the raw and corrected model forecast, we define an ROC
area index (ROCA), which represents the area enclosed
by the ROC curve and the lower-right coordinate axis

(Wilks 2011):
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M-1
ROQV:;KQH+HMEH—EWL (7)
where M is the critical probability classification number.
Figure 11d shows the evolution of ROCA with the forecast
lead time from the raw (dotted line) and corrected (solid
line) model forecast. The ROCA of cold and warm events is
greater than 0.5 in all the forecast lead times, which indi-
cates that CFSv2 has prediction skills for the two kinds of
events. With the increase of the lead time, the ROCA of
warm and cold events gradually decreases, which is consis-
tent with the intuitive results in Figs. 11a—c. Comparing the
solid lines with the dotted lines, we find that the ROCA of
the corrected model forecast always are larger at almost all
lead times, which indicates the fact that the LDA correction
method contributes to the improvement of ensemble prob-
ability forecast of CFSv2.

The Brier score (BS) is most used for verification of
probabilistic forecasts of dichotomous events. Thus, we use
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the BS to verify the prediction skill of the warm and cold
event. The BS can be defined as the mean square probability
error (Wilks 2011):
13 2
m=NZm—qy (8)
i=1

where the index i denotes a numbering of the N forecast—event
pairs; f; is the forecast probability of the events occurring; if the
event happens, the observation O; = 1, and O; = 0 if the
event does not occur. In this form, the BS is anticorrelated
with the skill of the forecast: a higher BS represents a less
accurate prediction (Murphy 1973). The BS can take on
values only in the range 0 = BS = 1. Figure 12 shows the BS
of warm and cold events evaluated for the raw model forecast
(dotted line) and the corrected forecast (solid line) as a function
of forecast time. At most lead times, the BS of the corrected
forecast is lower than that of the raw forecast, which implies that
the LDA-corrected forecast improves the performance of the
model forecast to predict cold and warm events.
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FIG. 9. Forecast Nifio-4 index of the raw model forecast (gray)
and the corrected model forecast by the LDA correction method
(red) of (a) the 2015/16 El Nifio event and (b) that of the 2009/10 La
Nifia event.

Although the corrected model forecast reduces the model
forecast RMSE and spread, but has poor performance in the
ratio of ensemble spread and RMSE, the LDA correction
method has a positive influence on the probability forecast skill
of warm and cold events.

4. Conclusions and discussion

There is forecast error in the numerical model forecast
products. Model forecast correction is convenient to im-
prove forecast skill. Considering analogs from large his-
torical data can reproduce the evolution of a dynamical
system to some extent, analogs can be applied to model
forecast correction, which is still a new problem although it
has been studied for a long time (e.g., Ding et al. 2020; Ren
and Chou 2007). The key question of the analog correction
scheme is how to locate analogs from historical dataset.
This paper focused on this question and applied the up-
dated LDA method to locate analogs. Compared with the
algorithm of the LDA method used by Li and Ding (2011)
and Hou et al. (2020), we adopted the unequal weight co-
efficients from RMSE of the persistent forecast to optimize
the expression of evolutionary information of the LDA
method in this paper.

In this study, we depicted the LDA correction scheme in
detail and extended its application scope to the operational
SST forecast products from the state-of-the-art coupled model
CFSv2. The operation steps have been described in this paper.
The experimental results showed that the performance of SST
forecast product is improved by the LDA correction method.
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FIG. 10. The RMSE (solid line) and ensemble spread (dotted
line) of the Nifio-4 index from the ensemble forecast results (m01-
m12) of CFSv2 over the period from January 1982 to December
2018. The gray lines are the RMSE skill of each member raw
forecast results, and the light red lines represent the corrected re-
sults using the LDA correction method. The ensemble means are
marked as the solid black line (raw forecast) and the solid red line
(corrected forecast).

For the global SST forecast from CFSv2, the correction reduces
RMSE values and increases correlation coefficients, espe-
cially in the tropical Pacific. The improvement of the model
forecast from the LDA correction method is more obvious
along with the increase of the lead time, which is useful to
improve model forecast skill in the long-term lead time and
increase the availability of forecast products. The ENSO
phenomenon is the dominant seasonal-interannual signal in
the tropical Pacific and an important forecast object. For
ENSO, the LDA correction method increases the accuracy
of the model forecast expressed in correlation increasing
and RMSE decreasing of the central and eastern tropical
SST. It is worth noting that CP ENSO represented by the
Nifio-4 index and its related regions own higher forecast
skills by the LDA correction method. The seasonal pre-
dictability barrier of ENSO is also reduced by the LDA
correction, especially for spring, which alleviates the spring
forecast obstacle of the model. Besides improving the
model ensemble mean forecast skill, the LDA correction
method can also make a positive influence on the proba-
bility forecast results of ENSO cold and warm events, which
is a new aspect of the application of the analog correction
method. In this work, the LDA correction method has been
demonstrated to be an effective local analog-based method
to identify analogous trajectories and correct forecast
product from the CFSv2 model. The LDA correction
method requires low computing time and is easily applied
to different operational forecast products. We consider that
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the LDA correction method offers a feasible approach for
combining historical data and model operational forecast
results.

For the analog correction method, the amount of data
available is important to impact the correction performance.
However, the data amount to be used to locate analogs is
always limited due to the observation data. For the LDA
correction method, we also evaluated its performance under a
different volume of historical data (no shown). The results
demonstrate the LDA correction method always improves the
forecast skill of ENSO. However, as more historical data are
used, the improved performance of the LDA correction
method is more robust.

Besides evolutional information used by the LDA method,
local analog is also an important property of the LDA method.
The local feature focused by the LDA method helps to reduce
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the dimension of the focused system. As detailed by van den
Dool (1994), the number of elements in a dataset required to
guarantee the retrieval of analogs at a given precision grows
exponentially with the intrinsic dimension of the state.
Consequently, it is unrealistic to directly apply analog strat-
egies to state spaces with an intrinsic dimensionality above 10,
meaning that global analog forecasting operators are likely to
be inappropriate for high-dimensional systems. In contrast,
local analogs provide a means to decompose the analog cor-
rection of the high-dimensional state into a series of local and
low-dimensional analog correction operations, which play a
positive role in locating analog with quality. However, the
spatial structure also contains the dynamical information of
the system and needs to be used to locate the analog while the
LDA method only used the time series of SST on each grid in
this paper. Therefore, the LDA method will introduce the
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spatial evolutional structure meanwhile keeping the local
analog in the future.

The analog correction method improves the model forecast
using statistical information from analogs by reducing model
state-dependent forecast error. The analog correction method
has an application premise that the model has the capacity to
describe the dynamical process and its model forecast errors
has similar state-dependent parts. Thus, in these regions
where the raw model forecast skill is low, the improvement of
forecast skill from the LDA correction method is not obvious
and even negative. As a contrast, in these regions that cor-
respond to the high forecast skill, the proportion of improved
grid points from the LDA correction method is larger (as
shown in Fig. 13). Therefore, the capacity of the model to
depict the dynamical system and the theoretical predictability
limit of the dynamical system affect the performance of the
analog correction, which is valuable to be studied in the future.
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